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HIGH-ORDER TWO-WAY ARTIFICIAL BOUNDARY CONDITIONS FOR NONLINEAR
WAVE PROPAGATION WITH BACKSCATTERING*

GADI FIBICH! AND SEMYON TSYNKOV#§

Abstract. When solving linear scattering problems, one typically first solves for the impinging wave
in the absence of obstacles. Then, using the linear superposition principle, the original problem is reduced
to one which involves only the scattered wave (which is driven by the values of the impinging field at the
surface of the obstacles). When the original domain is unbounded, special artificial boundary conditions
(ABCs) have to be set at the outer (artificial) boundary of the finite computational domain, in order to
guarantee the reflectionless propagation of waves through this external artificial boundary. The situation
becomes conceptually different when the propagation equation is nonlinear. In this case the impinging and
scattered waves can no longer be separated, and the problem has to be solved in its entirety. In particular, the
boundary on which the incoming field values are prescribed, should transmit the given incoming waves in one
direction and simultaneously be transparent to all the outgoing waves that travel in the opposite direction.
We call this type of boundary conditions two-way ABCs. In the paper, we construct the two-way ABCs
for the nonlinear Helmholtz equation, which models a continuous-wave (CW) laser beam propagation in a
medium with nonlinear index of refraction. In this case, the forward propagation of the beam is accompanied
by backscattering, i.e., generation of waves in the opposite direction to that of the incoming signal. Our two-
way ABCs generate no reflection of the backscattered waves and at the same time impose the correct values
of the incoming wave. The ABCs are obtained in the framework of a fourth-order accurate discretization to
the Helmholtz operator inside the computational domain. The fourth-order convergence of our methodology
is corroborated experimentally by solving linear model problems. We also present solutions in the nonlinear
case using the two-way ABC which, unlike the traditional Dirichlet boundary condition approach, allows for
direct calculation of the magnitude of backscattering.

Key words. artificial boundary conditions (ABCs), two-way ABCs, radiation, the Helmholtz equation,
nonlinearity, nonparaxiality, fourth-order schemes, self-focusing, backscattering

Subject classification. Applied and Numerical Mathematics

1. Introduction. The Helmholtz equation
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models time-harmonic wave propagation in D dimensions. The simplest case is when k = k¢, which corre-
sponds to propagation of waves through a homogeneous medium. For example, in optics E is the electric
field, kg = wono/c is the wavenumber, wy is frequency, ng is the (linear) index of refraction of the medium,
and c is the speed of light.

In many applications, one wants to solve equation (1.1) in the presence of an impinging wave field and
boundaries, which can be either surfaces of obstacles or interfaces between different media. The impinging
wave field is prescribed by a relation of the form

Eine = Eionc on Eimpinging 5 (12)

where Zimpinging can, for example, be a point (specifies a spherical wave) or a plane (specifies a plane wave),
and E?

o 18 given. The physical properties of surfaces and/or interfaces, i.e., how they handle the impinging

wave in terms of propagation through and/or reflection, are given by linear operator relations of the form
L[E] =0 on interface - (1.3)

For example, if Yintertace 18 the surface of a perfect conductor, then (1.3) reduces to E = 0 on Zinterface (total
reflection).

Since equations (1.1-1.3) are linear, one can solve the scattering problem in two sequential stages as
follows. The solution is split into two components

E= Einc + Escat .

At the first stage one solves for the incoming wave field Ei,., which is the solution of equation (1.1) in R”
in the absence of any obstacles and/or interfaces, driven by the known source term (1.2). Typically, one can
write this solution explicitly as a superposition of plane and/or spherical waves. Then, at the second stage,
one solves for the scattered wave field Fqcnt, which satisfies equation (1.1) with no sources, subject to the
boundary condition

L[Escat] = _L[Einc] on  interface

which directly follows from (1.3). In the process of solving numerically for Eycat, one has to replace R” with
a bounded computational domain. In doing so, one needs to introduce the artificial boundary conditions
(ABCs), see [28], which make the boundary transparent for outgoing waves and guarantee the solvability of
the truncated problem on the finite computational domain, such that the computed solution is close to the
original infinite-domain solution.

In addition to the simplest case k = ko, there are numerous applications where the medium is non-
homogeneous, i.e., k = k(x1,...,xp). In this case, one may also need to solve for the incoming field Ei,.
numerically (using ABCs), rather than analytically, However, as this problem is linear as well, one can still
employ the linear superposition principle and thus first solve for Fi,. and then for Egcas.

In the current study, we consider a more complex case when k depends also on the field intensity, i.e.,
k = k(wo, |E|?). For example, the propagation of an intense continuous-wave (CW) laser beam'® through

a Kerr-type medium such as water or silica, is described by equation (1.1) with k* = kZ(1 + ¢|E|*), where

LCW laser beam is a monochromatic wave, i.e., it is “purely” periodic in time, as opposed to, say, pulses and wave packets.



€ = degenz and no in the Kerr coefficient? (e.g. [4,19]). In this case, beam propagation is governed by the
nonlinear Helmholtz equation (NLH)

AE+KE=0, K =E(1+¢EP? . (1.4)

Because of the nonlinearity, the equations for FEi,. and FEgcay can no longer be decoupled as in the linear
case. From a numerical point of view, this nonlinear coupling adds a new twist to the construction of the
ABCs, since the Kerr medium interface at z = 0 is required to transmit Ei,. in one direction, and at the
same time transmit Fge.t in the opposite direction. Deriving and implementing this two-way ABC in the
discrete nonlinear framework is a key emphases of this study.

2. Physical model. Although our numerical approach is quite general, in order to motivate the pre-
sentation we relate it to a specific physical problem, namely, that of an intense laser beam propagating
through a nonlinear Kerr medium. The Kerr medium is located in the half-space z > 0, the directions of
increasing and decreaging z are called right and left, respectively, and the wave source in the model is a
right-traveling beam, impinging on the Kerr medium at z = 0. Therefore, the only physical boundary in
the model is the transverse two-dimensional (z,y) plane at z = 0. For simplicity, we assume that the input
beam is radially-symmetric in the transverse plane and denote the transverse coordinate by r = /z2 + y2.

2.1. Two-way propagation of waves at media interface. At z = 0, the electric field £ has both
incoming and backscattered components. The value of the incoming wave upon entering the nonlinear
medium is given by

Eine(r,0) = E2 (r) . (2.1

inc

In the current formulation of the problem, the two-way ABC at z = 0 has to ensure the reflectionless
propagation of backscattered waves through the boundary (a radiation boundary condition) and at the same
time correctly prescribe the incoming signal (2.1).

We note, however, that a more accurate physical model should include reflections from the media interface
z = 0. These reflections can result in different values of the incoming wave field on two sides of the interface,
e, Eine(r,—0) # Einc(r,+0). In the current study we disregard this effect, which can be interpreted as
either considering E? = of (2.1) to be the part of the incoming wave that has already been transmitted past
the z = 0 interface, or assuming continuity of the wavenumber across the interface. Similarly, we neglect
the reflection of the scattered waves by the media interface at z = 0. In other words, we require that the
boundary z = 0 be completely transparent for all left-propagating waves. In Section 8.2, we briefly comment
on how one can incorporate a reflecting interface (i.e., discontinuity in & at z = 0) in the methodology that
we are building. In fact, we consider this as one of the future extensions of our current work.

2.2. Behavior as z — +oo. Basically, as 2 — 400, we require that E have no left-propagating
components. In this study we assume that at large distances propagation is diffraction-dominated and the

field amplitude decays to zero, i.e., lim max |E(r,z)| =0, so that
z—00 0<r<oco

lim k*=k] .
Z—+00

2We note that the index of refraction is defined in the frequency domain. In the time-domain, the cubic nonlinearity
becomes a nonlocal convolution, which , in the case of almost-monochromatic wavepackets, to leading order, is equal to a cubic
nonlinearity [9].



Therefore, at large z’s the solution is a linear superposition of right-traveling waves.

In the discretization process (see Sections 5 and 6) we truncate the unbounded domain and introduce
a far-field artificial boundary at z = zpax. Similarly to the interface z = 0, the far-field boundary has to
be transparent for all outgoing (i.e. right-propagating) waves. Consequently, the ABC at z = zyax has to
guarantee the reflectionless propagation of all waves traveling towards z = +o0.

3. Paraxial approximation. Most research on wave propagation in a Kerr medium has been carried
out in the framework of the nonlinear Schrédinger equation (NLS), rather than NLH. We now briefly describe
how one derives NLS from NLH and quote some results on wave propagation in the NLS model. For more
information on NLS theory, see, e.g., [11,19,26,27].

For reasons that would become clear later, we consider the NLH in RP with a general power-law non-
linearity

AE+KE=0, K =k(1+¢E>).

We denote the axial coordinate by z := xp, and assume radial symmetry in the transverse plane of the first

E=E(rz), r=4/ai+ 2% .

We also separate the slowly-varying envelope i from the fast oscillations and introduce nondimensional

D — 1 coordinates, i.e.

variables:

E = (rokoy/e) ™Y/ exp(iko2)¢(7, ) , #=— , 7= :
To 2LDF

where 7 is the initial beam width and Lpr = kor3 is the diffraction length. After dropping the tildes, the

equation for the amplitude ¢, in nondimensional form, is given by

7npwzz +@p, + Aﬂll + |¢|20¢ =0,
where the transverse Laplacian is

ik  _® D-208

= 4=y ==
oz3 ox%,_, Or? r or’

Top = 27‘0 ko )

In typical physical setups the beam width ry is much larger than the wavelength A, which implies that

Ay

and

0 < np < 1 (or, equivalently, in dimensional variables, that v,, < kot,). Therefore, it is customary to
employ the parazial approzimation, i.e., neglect the vnp%,, term. In that case, NLH reduces to the nonlinear
Schrédinger equation (NLS):

W, + ALY+ Y|P 7Y =0. (3.1a)
The NLS is an evolution equation where z plays the role of “time” and the initial condition is given at z = 0:

¥(r,0) = B (r) - (3.1b)



Therefore, under the paraxial approximation one approximates a boundary-value problem for the NLH
with an initial-value problem for the NLS. Since the NLS accounts only for the forward-propagating wave,
backscattering effects are neglected in this model. The question arises, therefore, whether and how the
results of the NLS model remain valid at the NLH level, or alternatively, how these results are affected by
backscattering. As of yet, almost no rigorous studies of these issues have been conducted. We therefore hope
that the current study, which focuses primarily on developing a computational methodology for solving the
NLH, will provide means for comparing numerically the NLH and NLS in the future.

Let us now proceed with describing some specific results in the NLS model which are interesting to look
at in the framework of the NLH.

3.1. Critical self-focusing — arrest of collapse. We recall that the focusing NLS (3.1a) is called
subcritical, critical or supercritical, when o(D — 1) is less than, equal to, or greater than 2, respectively. It is
known that the solutions of both critical and supercritical NLS can actually develop singularities, i.e., blow
up, at a finite z. There is, however, a marked difference between these two cases, as near the singularity
nonlinearity dominates over diffraction in the supercritical case, while they are of the same magnitude in
the critical case. As a result, unlike the supercritical case, singularity formation in the critical NLS is highly
sensitive to perturbations, which can arrest the blowup even when they are small [11,12]. In this paper we
focus on the critical case, which corresponds to the physical self-focusing (¢ = 1 and D — 1 = 2). In that
case, solutions of the NLS can become singular (i.e., blow up) after finite propagation distance, provided
that their initial power (L? norm) is above a certain threshold N, which is called the critical power.

The observation that the paraxial approximation breaks down near the singularity has been already
noted by Kelley, in his celebrated paper on self-focusing [15]. Feit and Fleck [8] were the first to demonstrate
that nonparaxiality of the beam can arrest the blowup, by showing numerically that initial conditions that
lead to singularity formation in the NLS, result in focusing-defocusing oscillations in the NLH. In these
simulations, however, they did not solve a true boundary-value problem for the NLH. Instead, they solved
an initial-value problem for a “modified” NLH that describes the right-going wave only (while introducing
several additional assumptions along the way). Akhmediev and collaborators [1,2] analyzed an initial-value
problem for a different “modified” NLH; their numerical simulations also suggested that nonparaxiality
arrests the singularity formation. Both numerical approaches ( [8] and [1,2]), however, did not fully account
for the effect of backscattering. Fibich [10] applied asymptotic analysis to derive an ODE in z for self-
focusing in the presence of small nonparaxiality. His analysis suggests that nonparaxiality indeed arrests the
singularity formation, resulting instead in decaying focusing-defocusing oscillations. However, backscattering
effects were neglected in this asymptotic analysis.

Since there are no singularities in nature (i.e., the laser beam continues to propagate beyond the NLS
blowup point), a natural question is whether initial conditions that lead to blowup in the NLS, correspond
to global solutions of the corresponding NLH. To the best of our knowledge, the very issue of the solvability
of NLH still remains unresolved, including the critical case o(D — 1) = 2. Therefore, we are interested in
solving numerically the critical NLH as a true boundary-value problem, in order to address this question.
Another issue of interest in the critical case is to calculate the amount of power which is backscattered for
beams which do not blow up in the NLS model. We note that at present, there is no data coming from
either analysis or numerical simulations, on the actual extent of backscattering, besides the general notion
that it should be small.

In order to simplify the calculations, we consider the critical NLH with D = 2 and ¢ = 2, i.e.,



[ o2 o2

2T W] E(z,r)+KE=0, K =kj(1+€EBE|"), (3:2)

which corresponds to the critical NLS

iy + Prr + [Pl =0 (3.3)

Based on the insight gained from NLS theory, we can expect that the results for the critical NLH with D = 2
and ¢ = 2 would also apply for the critical NLH with D = 3 and o = 1.

4. Nonlinear iteration approach. In this section we use a continuous formulation to outline and
motivate the iterative numerical approach that we adopt in this study for solving the foregoing nonlinear
wave propagation problem. The actual derivation, however, will be done completely at the discrete level in
Sections 5 and 6.

We are interested in solving the NLH (3.2) in the half-space z > 0, subject to boundary condition (2.1)
for the incoming field, decay in the transverse direction

lim E(r,z) =0,

r—0Q0

and radiation conditions at z = 0 and z = 400 for the outgoing waves, as discussed in Sections 2.1 and 2.2.

We build the iteration algorithm as follows. First, we define the linear version of the problem as

Ly[E] =0, (4.1)
where
2 P71
Ly = [@ + w] + Kk <1 + €F(T,Z)> y (4.2)

F(r,z) is a given function, and E satisfies the same boundary conditions as in the nonlinear problem. Then,
we find the solution of the nonlinear problem (3.2) using the iterations

Lo [E™V) =0, FP=|EM™*  for n=012,....N , (4.3)

with the initial guess E()(r,z) = 0. Since there is no rigorous theory that guarantees the convergence
of algorithm (4.3), our simulations (see Section 7) serve as a numerical test for the convergence of these
iterations. In Section 8.3 we briefly discuss alternative approaches to the nonlinear iterations.

4.1. Iterative solution of the variable-coefficient linear equation. In general, one can use any
linear Helmholtz solver to solve equation (4.3) with respect to E(™t1) while keeping F(™) frozen. In this
study we solve (4.3) also iteratively as

Ly [EM ) = —ek2F™ . EM™  for  m=0,1,2,...,M(n) , (4.4)

where
? o?

_ | = - 2
Ly = [6z2+67'2] + k2.

Note that the function F(™ does not change in the course of the iterations (4.4).



By rewriting formula (4.4) in the form
Em+) = [ [_ekg Fm . E(m)] ,

we see that it formally corresponds to the standard fixed point iteration scheme. Therefore, these iterations
are more likely to converge when the RHS is small. We note that this occurs when eF (") < 1, i.e., when the
nonlinearity in the NLH is weak (k? ~ k3). We can expect this to be the case in physical self-focusing for
the following reason. The Kerr coefficient of the medium ns is so small that even for intense laser beams,
upon entering the nonlinear medium, €|EQ|? < 1. In the framework of the NLS model, if the initial beam
power is above the threshold for collapse, the nonlinear contribution to the index of refraction €|E|? (see
(1.4)) would eventually become comparable to the linear one ng. However, the asymptotic analysis in [10]
suggests that nonparaxiality arrests self-focusing when ¢|E|? < 1. As a result, k2 ~ k3 for all z > 0.

2. Direct solution of the constant-coefficient linear equation. At each iteration of the inner

loop (4.4), we solve a linear constant-coeflicient equation of the form
LyE = ®(r,2) , (4.5a)
where the right-hand side (RHS) @ is given by
& = —ek2F™ . Em) (4.5b)

Equation (4.5a), with ® given by (4.5b) and subject to the boundary conditions discussed earlier, is solved
in the following way. We use Fourier decomposition in the transverse direction for the solution E, the RHS
®, and boundary data EJ _(r):

Zu ) cos(lr) , Z f(z)cos(lr) , E2.( Zumc cos(lr) . (4.6)

Because of the orthogonality of the Fourier modes, the I-th Fourier mode u!(2) of E(r, z) satisfies the ordinary

differential equation
L) R () = i), K =k 12 (4.7)
subject to the Dirichlet condition for the right-going wave at z = 0 [cf. (2.1)]:

0,1

ufnc(o) = Uine » (48)
a radiation condition for the left-going wave at z = 0, and a radiation condition at z = +o0. It is at this
level, i.e., after the separation of variables, that we implement the two-way ABC at z = 0 and the radiation

boundary condition at z = +co. For that, we use the concept of the one-way Helmholtz equations.?

4.2.1. One-way Helmholtz equations and the radiation principle. Equation (4.7) admits two
linearly-independent eigenfunctions: u() = eVk# and u® = e=V¥* When k2 > 0, ul) = ellkilz is the
right-propagating wave and u(?) = e~#¥1% ig the left-propagating wave, whereas when k? <0, ul) = eIkl

2) — kil

is the right-decaying (evanescent) wave and u( is the left-decaying (evanescent) wave. Therefore,

3The term “one-way wave equation” is apparently due to Engquist and Halpern [7].



the one-way Helmholtz equations that each admits only one of the two eigenfunctions while prohibiting the

u, —i\/ku=0, (4.9a)
uy +i4/ku=0. (4.9b)

Equation (4.9a) corresponds to the right-traveling or right-evanescent wave u("), and equation (4.9b) corre-

other one are:

sponds to the left-traveling or left-evanescent wave u(2).

As mentioned in the end of Section 2.2, for the purpose of numerical solution we truncate the infinite
domain [0, +00) in z and reduce it to the finite interval [0, Zmax]. The one-way Helmholtz equations (4.9)
can be used as boundary conditions for equation (4.7) on the interval [0, zmax]. Indeed, if we want to make
sure that near both edges of the interval [0, zmax] the solution is only composed of outgoing waves, then
we need to use relation (4.9a) as the boundary condition at z = zmax and relation (4.9b) as the boundary
condition at z = 0:

uy; —i\/ku=0  at 2= Zmax, (4.10a)
uy +iy/u=0 at z=0. (4.10b)

Clearly, as the boundary conditions (4.10a) and (4.10b) each eliminate one of the two eigenfunctions (%)
and u(®, the homogeneous version of equation (4.7) on [0, zmax] (i-e., when f! = 0) with these two boundary
conditions is only satisfied by the trivial solution. Consequently, the non-homogeneous equation (4.7) with
boundary conditions (4.10) is uniquely solvable for any RHS f concentrated on the interval [0, zpmax]- From
the standpoint of physics, the resulting solution is only composed of waves due to sources located inside
[0, Zmax], which radiate to the right and to the left, but contains no incoming waves from sources outside
this interval. A solution of this type is said to satisfy the radiation principle.

4.2.2. Adding the incoming power. As has been mentioned, for the particular problem that we are
studying we also need to prescribe the incoming wave at z = 0, i.e., complement the radiation boundary
condition (4.10b) for the left-traveling waves at z = 0 with a Dirichlet boundary condition (4.8) for the given
right-traveling wave, which altogether will yield the two-way ABC. In the continuous framework, this can be
done as follows. The incoming wave (4.8) gives rise to a solution of the form u?lilcei\/gz. Substituting this

expression into the one-way Helmholtz equation (4.9b), we arrive at the following inhomogeneous relation

Uy + i/ kP = 2i\/kfei\/ﬁzu?l;lc . (4.11)

As in the case of any inhomogeneous linear differential equation, the general solution to equation (4.11) can
be written as a sum of the general solution uy to the corresponding homogeneous equation (4.9b) and a

particular solution u, to the actual non-homogeneous equation (4.11):
U =ug + Up -

We may pick the particular solution as the one generated by the incoming wave: u, = u?l;lcei\/ﬁz, and the

general solution to (4.9b) is obviously given by uy = const - e~ Ve,

4.2.3. Obtaining the overall solution. In order to add the incoming power to the radiation solution,
we replace the homogeneous boundary condition (4.10b) with relation (4.11) interpreted as a boundary



condition at the left edge of the interval:

u, + vk = 20y [kt at 2 =0. (4.12)

This implies that the overall solution will satisfy equation (4.7), subject to boundary condition (4.10a) at
Z = Zmax and boundary condition (4.12) at z = 0. Indeed, by linear superposition principle, the overall
solution can be written as the radiation solution with the incoming power added: w = uragiation + u?l;lceiklz,

where Uyagiation satisfies (4.7) and (4.10). A similar derivation in the finite-difference framework is presented

in Section 6.5.

4.3. Nested iterations. In summary, our solution algorithm consists of two nested iteration loops.
On the outer loop (4.3) we perform iterations with respect to the nonlinearity for n = 0,1,2,... ,A. On the
inner loop (4.4) we solve the linear equation with variable coefficients (which we obtain at each nonlinear
iteration) for m = 0,1,2,... , M(n). The numbers M = M(n) and N, at which we terminate the inner and
outer iteration loops, respectively, are determined experimentally in the course of iterations.

Our particular choice of solver for the linear variable-coefficient equation (4.3) is motivated by the

following two reasons:

(I) The inner loop iterations (4.4) require inverting a linear constant-coefficient operator (which is
the discrete analogue to Lg) rather than a variable-coefficient one. As a result, the inversion can be
performed by a direct method that involves separation of variables and LU decomposition. Moreover,
the implementation of the radiation boundary conditions, including the two-way ABC at z = 0, is
particularly convenient to do with the operator Lg.

(IT) If we used some other linear Helmholtz solver, on each outer loop iteration (4.3) we would have had to
invert a different linear operator Lg». However, using our particular linear solver involves a repeated
inversion of the same operator throughout both inner and outer loops. This implies that the actual
inversion can be performed only once in the very beginning and then the inverse operator, which is
stored in memory, can be applied repeatedly to the changing right-hand side. From the standpoint of
numerical efficacy this is beneficial because the inversion of the discretized Ly amounts to performing
LU decomposition of a family of sparse matrices obtained after the separation of variables. The result
of the LU decomposition is also sparse, hence its application to a given right-hand side has only
linear complexity. Since the number of iterations required for convergence is large (see Section 7),
this yields substantial savings of computer resources.

5. Discretization. We integrate the linear constant-coefficient equation (4.5) on a Cartesian grid of
variables (r, #) in the finite rectangular computational domain [0, rmax] X [0, Zmax]. Since the original physical
domain stretches all the way to z = 400, at the artificial boundary z = zpa we set a radiation boundary
condition that guarantees the reflectionless propagation of right-going waves (see Section 6). On the physical
boundary z = 0 we set a two-way radiation boundary condition that similarly guarantees the reflectionless
propagation of left-going backscattered waves and also correctly prescribes the right-going incoming signal
(Section 6). As concerns the transverse direction r, we assume that the solution vanishes at r = rmax:

E(rmax,2) =0, z2>0. (5.1)

Physically, this condition amounts to having a conducting surface at r = ryax, which acts as a perfect
reflector. Therefore, we take ry .y sufficiently large so that reflections from this boundary do not contaminate



the solution in the primary region of interest near r = 0. We also agsume that E is symmetric with respect
tor =0, ie.,

E(r,z) = E(-r,2), z2>0. (5.2)

This assumption is physically plausible and allows us to consider only half of the domain [0, rmax] in the r
direction rather than the full domain [—7max, "max]-

We use a uniform Cartesian grid with size h, and a total of M cells in the r direction (hy = rmax/M),
and size h, and a total of N cells in the z direction (h, = zmax/N). Accordingly, the grid nodes are:

{(rm,zn) P =M -hp, 2n=n-h,, m=0,1,... M, n= O,l,...,N} . (5.3)
We discretize equation (4.5) using a fourth-order accurate central-difference scheme:
L'E , +L§zEm,.‘ +kgEmpn =®mpn, m=0,1,....M-1, n=23,...,N-2, (54)
m,n m,n
where
—Ey_2n+16E,_1,—30E,, , + 16E - K
h _ m—2,n m—1,n m,n m+1l,n m+2,n
L E ., = 1272 , (5.5a)
—Eyn—2+16E, 1 —30E,, ,+ 16E,, nt1 — +2
Lh E . — m,n m,n m,n m,n m,n ) 5 5b
e ‘m n 12h’§ ( )

The index n that corresponds to the coordinate z runs from 2 to N — 2 in equation (5.4) because the
stencil, which is five-node wide in each direction, obviously cannot be applied to any of the boundary nodes
n=0,1,N — 1, and N located near z = 0 and z = zy.. The treatment of these near-boundary grid nodes
is discussed in Section 6 in the framework of the discrete radiation boundary conditions.

Similarly, the direct application of the transverse part L. of the discrete operator in (5.4) may also
require a special treatment of the near-boundary nodes m = 0,1, and M — 1. This treatment should take
into account the transverse boundary conditions at r = 0 (5.2) and at 7 = rmax (5.1). We can avoid this,

however, by expanding the solution E,, ,, for each n, in a finite series with respect to eigenfunctions of the
h

transverse discrete operator L,

which also satisfy the two boundary conditions (5.1) and (5.2) [this is a
discrete analog to the continuous Fourier expansion (4.6)]. This discrete eigenfunction expansion allows us
to treat the operator L%, in the transformed space from the very beginning and never implement it directly
on the grid. In addition, the radiation boundary conditions in the z direction are most natural to implement
in the transformed space separately for each longitudinal (i.e., z-aligned) mode, as we have seen in the
continuous formulation in Section 4.2.1.

We shall now derive the discrete eigenfunction expansion for E,, ,. Let us introduce the space of all grid

functions that are equal to zero at m = M, i.e.,

V:{wm‘mzo,l,...,M, qu:o}.

Clearly, for each n, the function E. , € V. We can define a weighted inner product on V:

1 1 M-1
(wa¢> = mfl}o% + M Z wmﬁbm . (56)
m=1
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PROPOSITION 5.1. Let us consider ¢ family of M one-dimensional grid functions of the argument m:

h ™
(F) — —1)mA Ag= T =1,2,...,M. .
wm Ccos <(2k 1)m 0) 9 6 ZTmax oM 3 k y &y 3 (5 7)

Then,

1) WL, cv.
(II) The functions '*) are orthogonal with respect to the inner product (5.6), i.e.,

@® 9Dy =0  for k£1. (5.8)

(III) The set {*)IM | forms a basis in V.
(1v) wﬁrlf) are even functions of the argument m, i.e., symmetric with respect to m = 0:

Pl =y .

(V) %) are eigenfunctions of the transverse component of the finite-difference operator of (5.4) with

eigenvalues A\g,*, i.e.,

Lh oy ®) = _x\p®) |z = # [1651n2 <w> —sin? (2k—1DA9)| . (5.9)

Proof. The inclusion (I) follows from the definition of the space V' and the explicit form of the functions
{5 (5.7). To show the orthogonality (II), we calculate

B 40y — S B0 _ L _ X 1
M- (p® 0y = mzo% ¥ -5 = T;)cos((Zk — 1)mA6) cos (21 — )mAd) — 5

&
N

I

| =
3
i

[cos ((2k + 21 — 2)mAB) + cos ((2k — 21)mAF)] —

N | =

&
N

I

N =
3
i

[cos (2gmAB) + cos (2smAf)] — %

&
N

ez2qut9 + e—z2qut9 + ez2smAt9 + e—z2smAt9 _

W | =
N | =

3
Il
=

1
1_ esh8 T ] g-@shp _520'

171= ei2qMAt9 1— e—quMAG 171= ei2sMAt9 1— e—i2sMAt9
- |+

1 — 249 1 — e—i2¢AA0

We indeed obtain zero, because out of the two integer numbers ¢ = k+1—1 and s = k —[ one is always odd
and another one even, and thus one of the expressions in rectangular brackets on the last line in the previous
chain of equalities is always equal to zero and another one is equal to two. Property (III) follows easily
from the orthogonality (II) because the orthogonality implies that the M functions P k=1,..., M, are
linearly independent, and the space V is obviously M-dimensional. Property (IV) is trivial and immediately
follows from the definition (5.7). Finally, property (V), including the explicit expression for the eigenvalue
At given in (5.9), is obtained by directly applying the operator L%, of (5.5a) to each p® E=1,...,M.

4Note that for small wavenumbers the discrete eigenvalues and eigenfunctions are similar to those in the continuous formu-
lation (cf. (4.6) and (4.7)) as A & (k — 1/2)2(7/max)? and 9|, =) = cos((k — 1/2)77 /Tmax)-

=mhy
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The application of L. to a ¥¥) in the near-boundary nodes requires using the symmetry property (IV) and
also noticing that all ¥®) | k = 1,..., M, are, in fact, antisymmetric with respect to m = M, which again
immediately follows from the definition (5.7). W

Proposition 5.1 shows that the system {¢(k)}£i1 forms an orthogonal basis of the space V', composed of
the eigenfunctions of the operator L., which are symmetric with respect to m = 0 and vanish at m = M.
For all n we can construct the expansion with respect to these eigenfunctions according to

M-1

1 1
- By — 1 1 _ _
ukn = {En, ) = - Bom + 17 m; Epmn cos((2k —1)mA8), k=1,2,...,M, (5.10a)
so that
M M
Emn=2Y ugn cos((2k—1)mA0) =2 “upntplh) , m=0,1,... .M. (5.10b)
k=1 k=1

Representation (5.10b) can be easily verified by directly substituting wg , of (5.10a) and performing the
transformations similar to those performed when proving Proposition 5.1. Obviously, formulae (5.10a) and
(5.10b) are particular versions of the direct and inverse discrete Fourier transforms, respectively.

The above eigenfunction expansion can be used to implement the transverse discrete differentiation along
with the boundary conditions at r = 0 and r = ryax. Indeed, if we expand E,, ,, and the RHS &, ,, in the
form (5.10b) with the coefficients ug , and f n, respectively, obtained using (5.10a), then, because of the
orthogonality of the eigenfunctions ¢/(¥) (5.8), we arrive at the following family of one-dimensional discrete

equations:®

h 2 —
Lzzuk, . - /\kuk,n =+ kouk,n =
k.n

(5.11)

—Ug,n—2 + 16uk,n—1 - 30uk,n + 16uk,n+1 — Uk,nt2 + k2
c

Uk, :fk, )
12h2 " "

E=k-X, k=1,2,..,.M, n=23,... N-2,

where the eigenvalues {\;} are defined in (5.9). Each of the M equations of (5.11) is independent of the
others and will be solved separately using the methodology of Section 6. Having obtained the modal solutions
ugp for all k = 1,2, ..., M, we then recover the overall solution E,, , by means of the inverse transformation
(5.10Db).

5.1. Implementation of transformations (5.10) using FFT. It is convenient to implement the
direct and inverse transformations (5.10a) and (5.10b) using the standard discrete Fourier transform, for
which library subroutines optimized for performance are available (fast Fourier transforms). To do that, we
note again (see end of the proof of Proposition 5.1) that representation (5.10b) allows us to extend E,, ,, for
any n beyond m = 0 and m = M using the explicit form of the basis functions ¢(*), see (5.7). The extension
for negative m’s is symmetric with respect to m = 0, and the extension beyond m = M is antisymmetric
with respect to m = M. For a given function E,, ,, m = 0,1,... , M, it is convenient to extend it first anti-
symmetrically with respect to m = M (so that the function be defined for m = 0,1, ... ,2M), and then also
extend it symmetrically with respect to m = 0 (so that it finally be defined for m = —2M,... ,0,... ,2M).

5Note the analogy to (4.7).
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In doing so, we arrive at a periodic grid function with the period 4M. It is easy to see that for a function
extended in this particular way the standard discrete Fourier transform
2M -1

> Emae ™A I=-2M,... 2M -1, (5.12a)
m=—2M

1
Un = or
reduces to (5.10a). Indeed, as E,, , is real we will always have v, = %, and in this particular case the
symmetry with respect to m = 0 implies that all u;,, are also real and thus w; , = u_;,. Consequently, we
can consider only 2M + 1 independent real coefficients «;, for { = 0,1,...,2M. Then, the antisymmetry
with respect to m = M will yield that «;,, =0 for all even { = 0,2,4,... ,2M and we are thus left with only

the coefficients u;,, for odd 1 =1,3,5,...,2M — 1. In other words, we can rewrite (5.12a) as follows
1 1
Uy = mEO,n + i mZ_IEm,n cos(ImAf), 1=1,3,...,2M -1,

and conclude that it indeed coincides with (5.10a) if we change notations from | = 1,3,5,... ,2M — 1 to
E=(1+1)/2k=1,2,...,M. Similarly, it is easy to see that because of the aforementioned properties

of upn (Un = U_yn, Uy real, and u, = 0 for I = 0,2,4,... ,2M), the standard inverse discrete Fourier
transform
| Mo
Emn = 3f l_gM W™ = —2M,... 2M , (5.12b)

reduces to (5.10b).

6. The one-dimensional discrete Helmholtz equation. In this section we analyze the discrete one-
dimensional linear hon-homogeneous Helmholtz equation (5.11), paying special attention to the treatment
of the boundary conditions for z = 0 and z = 2. We recall that the boundary conditions at z = zpax
should guarantee that this boundary be transparent for all waves traveling to the right (i.e., a standard
radiation ABC). The boundary conditions at z = 0 should guarantee that this boundary be transparent for
all backscattered waves traveling to the left, and at the same time impose the given incoming wave field
(two-way ABC). We emphasize that we have not discussed a particular discrete form of these boundary
conditions until now, since typically the ABCs are most convenient to set in the transformed space rather
than original space [28].

To simplify the notations, we drop the subscript &, so that equation (5.11) takes the form

—Up—2 + 16up_1 — 30Uy, + 16Uy 1 — Ungo L1
12h2 ¢

Un = fn, n=23,...,N—2. (6.1)

Equation (6.1) is a fourth-order difference equation. It is obtained, however, as a fourth-order accurate
difference approximation to the second-order differential equation. Therefore, compared to its original con-
tinuous counterpart, the difference equation (6.1) requires additional boundary conditions. A total of four
boundary conditions are needed to guarantee the solvability and uniqueness for equation (6.1). Two extra
boundary conditions that are not present in the continuous case are a pure numerical artifact. They are
accounted for by the presence of two extra evanescent waves among the solutions of the homogeneous version
of equation (6.1) in addition to the two standard traveling or evanescent waves (see Section 6.1). Altogether,
these four boundary conditions should ensure the desired behavior of the solution near z = 0 and near
%2 = Zmax. We also reiterate that the finite-difference equation itself obviously cannot be written in the form

13



(6.1) for the grid nodes n = 0,1, N — 1 and N. A special form of the discrete equation for these four grid
nodes is therefore required; this special form will actually constitute the boundary conditions and make the
total number of equations in the linear system be equal to the number of unknowns.

6.1. The discrete homogeneous problem. We start by analyzing the homogeneous counterpart to
the finite-difference equation (6.1) over an infinite grid domain, i.e.,

—Up—2 + 16up_1 — 30Uy, + 16Uy 1 — Up2
12h2

+Eu, =0, n=0=+1,42,.... (6.2)

PROPOSITION 6.1. Let a = (h; k.)? be such that either 0 < a < 16/3 or —3 < a < 0. Then, the general
solution to equation (6.2) has the form

Up =g + g5 o1 T+ e2p ", (6.3)

where ¢1,¢a,c_1, and c_o are arbitrary constants, and q1 and gz are roots of the characteristic equation that
corresponds to (6.2).
In addition,
(I) When 0 < e < 16/3, ¢ and q; " are waves propagating to the right and to the left, respectively. In
particular, when 0 < a K 1, then

@ = ekl 10 ((kc . hz)5) , (6.4a)

g =e M 1 O((ke - hy)®) (6.4b)

" are the discrete analogues of the right and left traveling waves e*<* and

and as such, qi" and ¢;
e~ <% respectively, with fourth-order accuracy.
(II) When —3 < a <0, ¢} and q; " are evanescent waves decaying to the right and to the left, respectively.
(III) In both cases, i.e., for 0 < a < 16/3 and for —3 < a < 0, ¢% and ¢; " are evanescent waves decaying
to the right and to the left, respectively.

Proof. Let us introduce the characteristic algebraic equation
—1+16g+ (120 — 30)¢? +16¢* —¢* =0 (6.5)

for the homogeneous finite-difference equation (6.2). It is generally known (see, e.g., [14]) that if all the roots
g; of a given characteristic algebraic equation are distinct, then the general solution to the corresponding
homogeneous finite-difference equation is obtained as a linear span of the grid functions g7, where the power
n is determined by the grid location. In the specific case that we are studying equation (6.5) is a quartic
algebraic equation and thus provided that its four roots {g; };*:1 are distinct, the general solution to the

homogeneous equation (6.2) has the form
Un = €167 + c2q5 + c3g5 + gy (6.6)

where {¢;}]_, are arbitrary constants.

4

Hereafter, we restrict ourselves only to the case when the roots {g;};_,

4
i=1

of equation (6.5) are distinct.
By explicitly calculating {g; (see below), we will show that multiple roots are only possible for the two
cases & = 0 and @ = 16/3, which are easy to avoid in practical computations.

To simplify the actual calculation of the roots of quartic equation (6.5), we first note that by dividing

1

(6.5) by ¢* we arrive at exactly the same equation for 1/q. Therefore, if g is a root, then ¢! is also a root

14



(this follows, of course, from the fact that the discretization (6.1) is symmetric). Accordingly, we rename
the four roots of equation (6.5): ¢, g2, ¢, and ¢; ', and write:

—1+16¢+ (120 —30)¢* +16¢°* —¢* = —(¢—q)la -t Vg —@)a—& ") =

(6.7)
(- dig+D)(¢ —daq+1) = 1+ (i + dp)g — 2+ dhd2)q” + (dy + d2)¢* — ¢*,

where
di=q+q¢', bd=@p+¢'. (6.8)

By comparing the beginning and the end in the chain of equalities (6.7) we obtain the following system of
equations for d; and ds:

d1+d2:16, —2—d1d2:120l—30,
from which we find that

di=8-6\1+a/3, d=8+61+a/3. (6.9)

From formulae (6.9) we conclude that both d; and d2 are real provided that « > —3. If, for example,
hr = h, (the cell aspect ratio of the discretization is close to one), then the definition of k. (see (5.11)),
where ), is given by (5.9), along with the definition of o = (h,k.)?, suggest that even for negative a’s their
absolute values are sufficiently small and thus we can always assume that a > —3 and consequently, consider
dy and do real. However, allowing for the complex values of d; and d» may only make the analysis more
cumbersome, but does not change any of the results hereafter. This, in particular, is corroborated by the
computations of Section 7.1, which were conducted on the grids with cell aspect ratios 20/1 and 20/3.

From (6.8) we have that ¢; and q ! are the roots of the quadratic equation
¢ —dig+1=0, j=12. (6.10)

Let us analyze the case j = 1 first. For 0 < @ < 16/3, equation (6.10) has two complex conjugate roots

di +i/4—d? 1 di—in/4A-d
ql = f s ql = f . (611)
From (6.11) it follows that |¢1| = |¢;'| = 1 and, in addition, that when 0 < & < 1 then (6.4) holds.

When -3 < a < 0, we have

dy — /& —4 _ di ++/d? -4
e (6.12)

Therefore, both roots are real and satisfy |¢1| < 1and |¢;"| > 1, showing that ¢? and g; ™ of (6.12) are discrete
analogues of two evanescent waves. We note that as « changes from positive to negative in formulae (6.11),
the right-propagating wave ¢f* changes into an exponential decreasing to the right and the left-propagating
¢; " wave changes into an exponential decreasing to the left, a fact that simplifies the identification of the
right and left traveling and decaying waves in the actual implementation of the boundary conditions at z =0
and 2z = Zmax-

It still remains to consider the case @ > 16/3. For the positive values of k%, we can introduce the
wavelength . = 27 /k. and for this range of « obtain A./h, < +/37/2. Thus, we see that o > 16/3 implies
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a poor “points per wavelength” resolution even for the long waves A\, > Ag = 27 /ko. This makes the
choice a > 16/3 inappropriate for practical computations. Finally, regarding the last case that has not been
considered yet, o = 0, we note that for this value of @ equation (6.10) will have a double root ¢1 = ¢_; = 1.
However, formulae (5.9) and (5.11) show that the case @ = 0 <= k2 = 0 can be easily avoided by slightly
changing the parameters of the discretization.
For j = 2, we find from equation (6.10) that
dy — /d — 4 1 _de+/d3—4
s & T (6.13)

Clearly, |g2| < 1, |g; | > 1 for all relevant values of & (o > —3), i.e., the two components ¢§ and ¢; " of

g2 =

(6.13) always correspond to evanescent waves. B

6.2. Discrete one-way Helmholtz equations. In analogy with the continuous description in Sec-
tion 4.2.1, we now construct the discrete one-way Helmholtz equations based on the solution (6.3) of the
homogeneous finite-difference scheme (6.2). From the very beginning, we think of these discrete one-way
Helmbholtz equations as the relations to be used as boundary conditions for equation (6.1).

According to Proposition 6.1, the discrete homogeneous equation (6.2) has four linearly independent
eigenfunctions, two of which are either traveling or evanescent waves and two others are always evanescent
waves; the presence of the latter (in contrast to the continuous case) is due to the fact that (6.2) is a
fourth order finite-difference equation that approximates the original second-order differential equation.
When constructing the discrete one-way Helmholtz equations, we, of course, first need to make sure that
they handle the first pair of discrete waves, ¢ and ¢; ", in the same way that equations (4.9) handle
the corresponding continuous waves. In addition, we need to decide how the discrete one-way Helmholtz
equations will handle the second pair of discrete waves, ¢& and ¢; ", which are purely numerical (i.e., due
to the use of a forth-order difference scheme). It is natural to require that the one-way-to-the-right discrete
Helmholtz equation admit the right traveling/evanescent wave ¢}* and the right evanescent wave ¢5 and that
the other two waves from representation (6.3), ¢; " (left traveling/evanescent) and ¢, ™ (left evanescent) be
suppressed by this equation. Indeed, ¢; ™ may either be traveling “the wrong way” or grow without bound
as n — 400 and ¢; " will always grow without bound as n — +00.% Clearly, if we use the one-way-to-the-
right equation that possesses such properties as boundary condition for (6.2) near n = N, it will guarantee
that the corresponding far-field solution (n > N) always be bounded at infinity and also that this solution
may only be composed of outgoing (right propagating and/or right decaying) waves. In other words, the
one-way-to-the-right discrete Helmholtz equation implies that in the far field n > N one can represent the
solution wu,, in the “restricted” form

Un = €197 + €245 (6.14)

as opposed to the general form (6.3). Formula (6.14) is equivalent to requiring that the vector
[un—_3,uN—_2,uN—_1,un] be a linear combination of the two vectors [1,q1,4%,¢3] and [1,q2,43,q3], which
is the same as requiring that

UN-3 UN-2 UN-1 UN
Rank 1 @ @ @ | =2. (6.15)

1 4 B @

5Besides being “natural,” this choice is also motivated by the well-posedness considerations, as the analysis of [13,20]
suggests.
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Relation (6.15) immediately yields the following two linearly independent conditions

UN-3 UN—2 UN-1 UN—2 UN_1 UN
det | 1 ¢ @ | =0, det| ¢ @ ¢ |=0,
@ 8 © B @
which reduce to
Q1qun—3 — (@1 + @2)un—2 +un-_1=0 (6.16a)
and
Q1qeun—2 — (@1 + @2)un—1 +un =0. (6.16Db)

The two scalar equations (6.16a) and (6.16b) constitute the one-way-to-the-right discrete Helmholtz equation.
The one-way-to-the-left discrete Helmholtz equation is constructed similarly. Symmetrically to the
previous case, we require that it admit the left traveling/evanescent wave ¢; " and the left evanescent wave
g5 " and that the other two waves from representation (6.3), ¢ (right traveling/evanescent) and ¢f (right
evanescent) be prohibited by this equation. (From the standpoint of physics the two waves, ¢;" and ¢; ",
account for the phenomenon of backscattering.) The waves ¢ and ¢f are to be suppressed in this case
because ¢ may either be traveling “the wrong way,” i.e., to the right, or grow without bound as n — —
and ¢ will always grow without bound as n — —o0. If the one-way-to-the-left discrete Helmholtz equation
is used as boundary condition for (6.2) near n = 0, it will guarantee that the corresponding far-field solution
(n < 0) always be bounded as z — —oco, and also that this solution may only be composed of outgoing
(left propagating and/or left decaying) waves. In other words, the one-way-to-the-left discrete Helmholtz
equation implies that in the far field n < 0 one can represent the solution u, in the “restricted” form

Up =Co1q] "N+ C_2q5 ", (6.17)

as opposed to the general form (6.3). To make sure that representation (6.17) hold, we require that the

vector [ug, u1,uz2, u3] be a linear combination of [1,¢; ", ¢ %, ¢; %] and [1,¢5 ", 452,45 °]:

U U1 U (7%:3

Rank | 1 ¢' ¢ 2 |=2. (6.18)
2 —3

1 ¢ 6’ ¢
Relation (6.18) is equivalent to the following two linearly independent homogeneous conditions:
uo — (q1 + g2)ur + 1gouz =0 (6.19a)
and

ur — (@1 + q2)u2 + 1g2u3 =0, (6.19b)

which constitute the one-way-to-the-left discrete Helmholtz equation.

We note that splitting the general solution (6.3) into right- and left-going waves (equations (6.14) and
(6.17), respectively), and allowing for only one direction while prohibiting the other at the corresponding
edges of the interval constitutes the radiation principle in the finite-difference discrete framework.
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Having constructed the one-way discrete Helmholtz equations (6.16) and (6.19), we now implement
them as boundary conditions for the discrete homogeneous equation (6.2). If we consider the finite grid
n=0,1,...,N on the interval [0, zmax], the five-node difference stencil cannot be centered at the near-edge
nodes n = 0,1, N — 1, and N. As a consequence, the number of equations in the linear system is less than
the number of unknowns by four. To make the number of equations and the number of unknowns equal,
we supplement equations (6.2) on the grid n = 2,3,... , N — 2 by equations (6.19a) and (6.19b) for n = 0
and n = 1, respectively, and by equations (6.16a) and (6.16b) for n = N — 1 and n = N, respectively. In

doing so, we arrive at the following linear homogeneous algebraic system with N + 1 equations and N + 1

unknowns:
Au=0, (6.20)
where
1 —(1 + @) q192 0 0 0
0 1 —(n+q) ae 0
-1 16 (120 — 30) 16 -1
1
[ — 21
1252 (6:21)
0 -1 16 (12a — 30) 16 -1
0 .. 0 0 —(q1 +q) 1 0
0 0 0 ) —(n+q) 1
and, obviously, u = [ug, u1, ... ,un]?.

The following Proposition 6.2 establishes the solvability and uniqueness of the solution for the non-
homogeneous counterpart of system (6.20).

PROPOSITION 6.2. The linear non-homogeneous system of equations Aw = f with the matriz A given
by (6.21) is uniquely solvable for any right-hand side f = [fo, f1,--., fn]%-

Proof. We show that the corresponding homogeneous system (6.20) has only trivial solution. Indeed, the
only solution to any of the equations of Au = 0 except the first two and the last two is a linear combination
of the type (6.3). However, each of the components of (6.3) is explicitly eliminated by one of the boundary
conditions (6.16a), (6.16b), (6.19a), or (6.19b), i.e., by one of the one-way discrete Helmholtz equations (the
first two and the last two equations of Au = 0). Therefore, the only solution to the homogeneous system is
the trivial one. 7 W

Although we have just shown that one can find the solution to Au = f, for any given f = [fo, f1,.-. , fn],
this solution will not, in fact, correctly approximate the corresponding solution of the non-homogeneous
differential equation, or in other words, will not, generally speaking, be the discrete radiation solution from
the sources f = [fo, f1,--., fn]- The reason for this discrepancy is that the one-way Helmholtz equations
which are used in the first two and last two rows of the matrix A have been constructed for the homogeneous
case. As a result, these four equations will not handle correctly the near-boundary source terms, which may,
generally speaking, be present. The “cure” to this problem, in the form of a a local modification to f, is
derived in Section 6.4.

7This solvability result is obviously similar to the one in the continuous case, see Section 4.2.1.
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In our simulations (see Section 7), we solve the finite-difference Helmholtz equation by inverting the
matrix A of (6.21). However, for the purpose of deriving the two-way ABCs that would correctly handle the
near-boundary inhomogeneities, we now show how to construct the solution u by using the Green’s function
of the finite-difference operator of (6.2). As we shall see, this approach is rather expensive numerically and
thus not useful for actual computing. However, it provides the most conceptually straightforward way to build
the radiation solution. Moreover, the analysis that employs the Green’s function reveals the mechanism of
the aforementioned discrepancy between the radiation from the sources f = [fo, f1,- .. , fn] and the solution
to Au = f.

6.3. Radiation solution by means of the Green’s function. In this section, we introduce a
problem very similar to (6.1), except that the solution u is now defined on the infinite grid n = 0, £1,+2,. ..,

and the right-hand side f,, is compactly supported:

“Un—2 ¥ 10un_1 = 30un + W0Unis ZUnvz o e g g ae
12k (6.22)
fn=20 for n<0 and n> N .

We also require that the solution wu,, of (6.22) satisfy the radiation principle in the areas of homogeneity
n < 0 and n > N. In other words, we require that for n < 0 one can represent u,, in the form (6.17) and for
n > N in the form (6.14). This is the most general formulation of the problem of finding the solution that
corresponds to the radiation of waves by the sources f = [fo, f1,-.. , f~]T in the finite-difference framework.
To solve this problem, we introduce the fundamental solution G™ (free-space Green’s function) for the
one-dimensional discrete Helmholtz operator, which is defined on the entire infinite grid n = 0,£1,£2,...

and is the solution of the equation
—-G"2 +16G™ ! — 30G™ + 16G™ ! — Gnt2

12h2

+ kG =6, n=0+1,£2,..., (6.23)
where
1, =0
§n = "
0, n#0
We also require that the Green’s function G™ satisfy the radiation principle as n — £o0, or in other words,

that it can be represented in the following form:

a1qi’ + a2q5, n>0
n __
G" = e (6.24)
blql + b2q2 , N S O
PROPOSITION 6.3. The values of the constants a1, a2, by, ba tn (6.24) are given by
12h2
@ = — —=n , (6.25a)
(i —a)ler —a)(e2 —q1)
—12h2
az = — s , (6.25b)
(@2 —e)a —e)e—a)
—12h2¢;!
by = =1 (6.25¢)

" —a N - —a)’
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12h2¢;°

by = — — — — .
(23 t— a1 1)(% ! - q2)(q; T - Q)

(6.25d)

Proof. To find these four constants, we need four equations. By matching the two branches (6.24) of the

Green’s function G™ at n = 0 we immediately obtain one equation
a1 +as =by +bs. (626&)

The other three equations for the coefficients of (6.24) are obtained from the original equation (6.23) written

for the nodes n = 0,1 and —1. For n = 0 we have
—-G7? +16G7 + (12 — 30)G° + 16G* — G* = 12h2
or
— (b1} + b243) + 16 (b1q1 + b2g2) + (120 — 30) (a1 + a2) + 16(a1qr + a2g2) — (a1 4§ + axq3) = 12h2 .
The previous equation can be simplified by subtracting from it the following relation
—(a1¢7% + a2¢5°) + 16 (a1¢7 " + a2q5") + (12a — 30) (a1 + a2) + 16(a1q1 + azqe) — (a1q; + a2q3) =0,

which comes from the fact that each branch of the Green’s function (the right branch a;¢} + a2¢% in this

particular instance) satisfies the homogeneous finite-difference equation (6.2). The subtraction yields:

— (b1 +b2¢3) + 16 (brg1 + bage) — 16 (a1gr ' + a2qy ) + (a1g7 % + azgy *) = 12R2 . (6.26b)
For n =1 equation (6.23) takes the form

-G +16G° + (120 — 30)G' + 16G? - G2 =0
and again, using the homogeneous equation for the right branch of the Green’s function, we obtain
— (s + bago) + (a1g7 ' +a2g;") = 0. (6.26¢)
Finally, for n = —1 we have
—G34+16G7 24+ (120 —30)G 1 +16G° - G* =0 .

Combining this relation with the homogeneous difference equation for the left branch of the Green’s function,

we arrive at
(bqul + b2Q2_1) —(@1q1 +a2¢2) =0 . (6.26d)

Now we need to solve equations (6.26) for ai, az, b1, b2. First, we multiply (6.26¢) by 16 and substitute

it into (6.26b) and then rewrite all four equations as follows

0’ 0 -4 -8 a 12h2

Ch_l Q2_1 —q —q2 az | _ 0 6.27)
1 1 -1 -1 b 0 ’

o e —q' ¢! bo 0
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The determinant of system (6.27) is easily reduced to a Vandermonde determinant, which eventually leads
to expressions (6.25). W

From the definition of G”, we have the following

PROPOSITION 6.4. For any given right-hand side f, compactly supported on [0,1....,N], the solution
to (6.22), subject to the radiation principle, is given by the convolution

m=N
Un= D fmG"™, n=0,£1,£2,. ... (6.28)

m=0

6.4. Radiation solution by means of inverting the matrix A. The cost of calculating the con-
volutions in (6.28) for n = 0,1,... ,N is O(N?). We now show that the portion of the solution (6.28) that
we are interested in, namely, u, for n = 0,1,... , N, can be recovered by means of inverting the matrix 4
of (6.21). The cost of this inversion will be only O(N) operations because the matrix A is pentadiagonal,
see Section 6.7 for additional detail.

PROPOSITION 6.5. Let A be defined by (6.21) and u = [ug,u1,-.. ,un]’ be defined by (6.28) for
n=0,1,... ,N. Denote f = [fo, f1,-.., fn—1,fn]|T. Then, Au=f, where

fo
A
f2 0
FEL o+ (6.29)
fn—2 0
Fna
I ] fn
fo def % (FfoG® + fLG7T) = (@1 + @) (foG' + /1G°) + qiqz (foG* + f1GY) | , (6.30a)
12h2
f ef # [ (foG' + LG° + f2G7Y) — (1 + @) (foG* + LG + 2G°) +
: (6.30b)
9192 (f0G3 + HG? + f2G1) )
v # [chch (fN_2G '+ fnoaG72 + fnGT3) —
: (6.30c)

(1 + @) (fn—2G° + fno1G7 + NG T2) + (fv—2G' + fno1 GO + NG ] )
and

f o IZIW a@ (fNo1G7 + INGT?) — (o + @) (fv—1G + NG + (fna G+ fNGO)] . (6.30d)
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Proof. By definition of the Green’s function G™ (see Section 6.3), (Au),, = f, for 2 <n < N —2.
Indeed, for 2 <n < N — 2 we have

12h% (Aw), = — Un—2 + 16up_1 + (12 — 30)up, + 16Unt1 — Unta

N N N
== G416 Y fnGPTIT™ 4 (120 - 30) D fnGT™

m=0 m=0 m=0
N N
+16 Z fmGn—i-l—m _ Z fmGn+2—m
m=0 m=0

m=0

N
=3 fu (-G 416G 4 (1200 — 30)GTT™ + 16G™ T — GRET™)
N N
=3 12260 mfm = 1282 ) fmbn_m = 12B2 fy .
m=0 m=0

As for (Au),, (Au),, (Au)y_,, and (Au),, these four components need to be calculated separately.
They will, generally speaking, differ from fy, f1, fa—1, and fn, respectively, because of the special structure
of the first two and the last two rows of the matrix A, which admit waves going in only one direction, see
Section 6.2.

We start the analysis from the left edge of the interval. Clearly, any f,, for m > 2 is not going to
contribute to (Au), because when substituting u of (6.28) into (6.19a) we, in fact, substitute only the left
branch of the Green’s function G"™™, see (6.24). Indeed, in formula (6.19a) we only need the values of u,
for n = 0,1,2, and if m > 2 this implies n — m < 0. The left branch of the Green’s function (6.24) by
definition turns (6.19a) into an identity, therefore (Au), is not affected by fp, for m > 2. Consequently,

(Au)y = (A [foG" + HG™]),

which proves (6.30a). Similarly, substitution of the left branch of the Green’s function into (6.19b) suggests
that any f,, for m > 3 is not going to contribute to (Aw),. Therefore,

(Au), = (A [foG" + AG" ' + ,G"7?]), ,

which proves (6.30b).

Similar analysis is conducted for the right edge of the interval. Only fn and fy_1 affect (Au)y = fN
because for all other components of the RHS f the contribution to the solution w at n = N -2, N -1, N is
given by the right branch of the Green’s function only; then the explicit form of the solution (6.28) and the
definition of A (6.21) easily yield expression (6.30d). Analogously, only three components of the right-hand
side, fn, fn—1, and fy_a, contribute to (Au)y_1 = fy_1, which together with (6.28) and (6.21) implies
(6.30c). B

From the standpoint of the original physical model the situation near z = zy,, differs substantially
from the situation near z = 0, because we can always make the effect of nonlinearity and/or variation of
coefficients near z = zyay negligible, by taking zp,.. sufficiently large. Therefore, from here on we will always
assume that fy = fn_1 = fv_2 = 0. Obviously, if we use the RHS f = [fo, f1,--- , f~n—3,0,0,0] of this
particular kind as source terms in (6.22), then for the corresponding solution w = [ug, 41, ... ,un] we will
have (Au)y_, = fa—1 = 0, see (6.30c), and (Au)y = fv = 0, see (6.30d). In other words, the modified
hight-hand side f of (6.29) in this case becomes f= [fo, fi fon. .. , fn—3,0,0,0]T.
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Let us emphasize that fo = (Au)o, see (6.30a), depends on fo and f1, and fi = (Au), see (6.30b),
depends on fy, fi, and f5. Likewise, in order to obtain fN_l = (Au)y_; = 0, see (6.30c) and fN =
(Au), =0, see (6.30d), in addition to the obvious requirement that fy = fxv—1 =0, we also need to impose
fn_2=0.

Propositions 6.2 and 6.5 guarantee that the only solution of the linear system Aw = f, where f =
[fo,fl,fz, cer s fN—3,0,0,0]T is the solution u of (6.22) with the RHS f = [fo, f1, f2,--- , fnv—3,0,0,0] subject
to the radiation principle. Thus, we have addressed the concern raised in the end of Section 6.2, namely,
which modifications to the right-hand side f are needed so that the solution obtained by inverting the matrix
A will coincide with the pure radiation solution from these particular sources f. Provided that near the
right edge of the interval the RHS is zero: fy = fnv—1 = fnv—2 = 0, it turns out that these modifications are
local and require only the replacement of the two old quantities fo and f; near the left edge of the interval
by the new quantities fo and fi, respectively. It is also important to mention that formulae (6.30a), (6.30b)
are by themselves local as well, and therefore the overall modification f — f amounts to only local, and
thus numerically inexpensive, operations on the grid near n = 0.

6.5. Adding the incoming power. The boundary conditions at z = 0 should guarantee the complete
trangparency of this boundary for all backscattered waves and at the same time be capable of accurately
prescribing the incoming signal; the combination of these two properties has been referred to as the two-

0

inc Tesults in

way ABCs. Similarly to the continuous case analyzed in Section 4.2.2, the incoming signal u
a forward propagating wave, given by uf ¢7. The grid function v, = u, ¢! solves all equations of the
homogeneous system Av = 0 except for the first two, which are the one-way-to-the-left discrete Helmholtz
equation (6.19). Therefore, by applying the matrix A of (6.21) to the vector v we create a right-hand side

that we denote by g. It is easy to see that

1— (@ + @) +¢e
o a1l —(n+e)a +de)

Uin
g= 12};2 0 . (6.31)
z .

0
Proposition 6.2 guarantees that the only solution of the system of equations Av = g, where g is given by
formula (6.31), is v = uf, qP. Note, the inhomogeneity g of (6.31) is a discrete counterpart of the right-
hand side of relation (4.12) (and (4.11)) obtained when introducing the incoming signal in the continuous

framework, see Sections 4.2.2 and 4.2.3.

6.6. Obtaining the overall solution. We can, finally, put together the foregoing stages of the deriva-
tion. Assume that there is a given RHS of the original equation (6.1) f = [fo, f1, fo,--- ,fN_3,O,O,O]T.
To obtain the solution with the incoming power uf, ¢ added, we first construct the new RHS f on the
basis of f according to formulae (6.29) and (6.30a), (6.30b). Then, we construct the additional source terms
g according to formula (6.31). Due to the linear superposition principle and according to Proposition 6.2
that guarantees solvability and uniqueness, we immediately see that the grid function u that we recover by

solving the overall system
Au=f+g, (6.32)

is the solution that we are looking for. Indeed, including f on the right-hand side of (6.32) guarantees the
radiation from the original sources f both to the left and to the right and including g on the right-hand side
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of (6.32) guarantees that the correct incoming signal uf g7 will be added. The system (6.32) is, of course,
solved by inverting the matrix A only once and not by solving separately with the RHSs f and g.

Thus, setting the desired boundary conditions at z = 0 and z = zpax is reduced to building and inverting
the special matrix A of (6.21) and also modifying the right-hand side of the equation f — f + g. We again
emphasize that the latter modification is not computationally expensive as both f and g are obtained by only
local operations on the grid near n = 0. These operations will come at virtually no cost when implementing
the algorithm numerically.

To conclude this section we note that the solvability and well-posedness analysis of general one-
dimensional systems of finite-difference equations can be found in [13,20].

6.7. Solution of Au = f + g. We solve the system Au = f + g using standard LU decomposition;
for a pentadiagonal matrix A the components of this decomposition will obviously be banded as well. As
the equation Au = f + g needs to be solved many times with changing source term but with the same A4,
at the beginning of a simulation we calculate once the LU decomposition of A, and use it throughout the
iterations. Therefore, the costs per iteration in terms of solving this equation are only due to the backward

substitution, which is O(N) arithmetic operations.

7. Numerical experiments. To assess the numerical performance of our algorithm, we first solve a

linear problem with variable coefficients in several different settings.
7.1. Linear problem with variable coefficients and backscattering. On a slender rectangular

domain in the (r,z) coordinates, [0, Tmax] X [0, Zmax], Where rmax = 7/2 is fixed, and 2zmax will vary as an

essential part of testing the methodology, we are recovering the following solution:
E = Eight + C - Bhest (7.1)

where C' is a constant, and the right and left propagating components Fiigny and Ejef; are given by:

Erigh = €'V kg —v? cos(vr) [1+ ez4e_z] , (7.2a)
Blegy = e~ Vk—v?2 cos(ur)e_(z/ﬁ)2 . (7.2b)

In the framework of our study, the left propagating component Eies; of (7.2b) is interpreted as backscattering.
Several parameters that control the actual shape of the solution (7.1) are: k¢ is the wavenumber that
corresponds to the homogeneous medium, see Sections 1 and 2; v is the transversal frequency; € in (7.2a)
determines the extent of deviation from the constant-coeflicient case for the right propagating mode (see
below); and 3 in (7.2b) determines the spatial (longitudinal) extent, to which the backscattered waves are
present in the solution. In the linear case we, of course, introduce the backscattered waves artificially, but
we are trying to follow the physically interesting situation when these waves are generated inside the domain
and propagate toward and through the left boundary z = 0. The constant C is introduced in (7.1) so as to
control the magnitude of the backscattered signal relative to the forward propagating signal and in particular
to be able to fully eliminate backscattering (C' = 0) if desired.
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Substituting Fyigne of (7.2a) into equation (4.5a), we obtain:

AFEight + kgEright — eetVR—VIz cos(ur)e_zz2 [21\ [k3 —v? (4z - z2) +12— 82+ 72

o222 [2iy/B =12 (42— %) + 12— 82 + 2] (7.3)

- € 1+e-zle® Eright

- _engright : Eright .
We therefore conclude that Eyigne of (7.2a) satisfies the variable-coefficient equation
AEright + kfight (z)Eright =0 5

where kfight (2) = k3 (14 €Fyight(2)) and Flignt(2) is defined by equalities (7.3). We indeed see that e controls
the extent of spatial variation of the wavenumber krighs. The solution Fygps is driven by the incoming wave

Eine = eV 2 cos(vr), 2<0. (7.4)
Similarly, the backscattered solution Ejeg of (7.2b) satisfies the variable-coefficient equation
AFBeft + k129ft (z)Eleft =0,

where kg (2) = k3 (1 + Fett(2)) and

2
Fleft(z)z—kl—g [4“/%_”2%_&_224_%] . (7.5)

For the overall solution E of (7.1) we obviously have
AE+12(2)E =0, (7.6)

where
Eright c- Eleft
E E '
The driving incoming signal for equation (7.6) is Ei,. of (7.4), evaluated at z = 0. The variable-coefficient

K (z) = kfight + Ko
linear equation (7.6) for E will be solved on the domain [0, rmax] X [0, Zmax] With the homogeneous radiation
boundary condition (4.10a) at z = zmax and non-homogeneous (two-way) radiation boundary condition (4.12)
at z = 0. The boundary conditions at r = 0 and r = ryax are symmetry and zero Dirichlet, respectively,
which corresponds to the general construction of Section 5, as well as the particular explicit form of the
solution (7.1), (7.2) that we use here. The solution will be obtained by iterations described in Section 4.2;
the corresponding discrete solution methodology is delineated in Sections 5 and 6.

Our primary goal when solving numerically the foregoing linear problem is to demonstrate that the
algorithm that we have constructed indeed possesses the design properties, i.e., (1) converges with the
fourth order of accuracy when the grid is refined, and (2) properly handles the radiation of waves (including
backscattering) or in other words, introduces no reflection from the boundaries z = 0 and z = zyax back into
the domain. A secondary goal is deriving the guidelines for subsequent nonlinear simulations, for example,
how geometric parameters, such as domain size, may affect the solution.

The forthcoming series of computational experiments corroborates our expectations in terms of grid
convergence and handling the backscattered waves, and also provides for a comparison between the following
two algorithms: The one constructed in this paper with the two-way ABC at the boundary z = 0 and a
more traditional one with the Dirichlet boundary condition at z = 0 (at the far-field boundary z = zmax we
set the same radiation ABC in both cases).
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7.1.1. Traditional approach — Dirichlet boundary condition. The algorithm that we have just
referred to as a more traditional one is formulated with the Dirichlet boundary condition for £ at z = 0. In
fact, already from the standpoint of physics one can anticipate that this algorithm is not going to perform
well when backscattering is present. Indeed, the physical setup of the model implies that all the information
available at z = 0 pertains only to the incoming wave. Thus, we basically cannot say anything about the
backscattered signal ahead of time because it is generated inside the domain (in the current example we, of
course, know everything because we simply construct a sample solution including the backscattering, then
produce the corresponding sources/inhomogeneities, and finally recover the same solution by the numerical
method, but this is done only for the demonstration purposes.) When constructing the two-way ABCs,
we do not make and do not need any assumptions regarding the backscattered wave, we simply make the
boundary transparent for all such waves. In contrast, in the Dirichlet case we can only specify the incoming
wave as the boundary data because no explicit information about other waves is available. Mathematically,
this amounts to making the following assumption/approximation:

E(r,0) = B2, (r) , (7.7)
which, in contradistinction to (2.1), prescribes the entire field at z = 0, rather than its incoming component
only. Consequently, the Dirichlet boundary condition will essentially reflect all backscattered waves reaching
z = 0 back into the medium, in contrast with the two-way ABC, which will let them go through. We
therefore expect that the algorithm with the Dirichlet boundary condition (7.7) at z = 0 may produce
reasonable results only if no backscattered waves are present in the solution. Otherwise, the error should
be roughly of the magnitude of the backscattered signal. The numerical results below corroborate these
expectations.

Note that to enforce the Dirichlet boundary condition at z = 0 for the discretization we obviously assign
a prescribed value to the solution at the leftmost grid node n = 0. Besides, in the framework of the fourth-
order scheme that we are using, we need an additional relation to be specified right next to the boundary
at n = 1. This is similar to obtaining the discrete one-way Helmholtz equations in the form of twe scalar
relations, see Section 6.2. The additional relation for the Dirichlet boundary conditions should be merely an
approximation of the underlying differential equation at » = 1, but this cannot be the same approximation
that we are using for the interior nodes (n > 2) because the latter employs a five-node wide symmetric stencil.
Thus, either a one-sided difference or a compact Padé-type approximation needs to be used at n = 1. We
chose the fourth-order Padé [6] on a three-node wide stencil in the particular form proposed in [25] because
as opposed to the “long” non-symmetric differences, it preserves the pentadiagonal structure of the matrix.

7.1.2. Results. For the simulations in the linear case we have chosen the following particular values
of parameters (see formulae (7.1), (7.2)): ko =20, ¢ = 0.2, v = 3 or v = 1, Zmax = 30 OF Zmax = 10,
B =3, C =1/2 for the case with backscattering, and C' = 0 for for the case with no backscattering. The
wavelengths in the r and z directions are A, = 27 /v and A, = 27 /ko, respectively. We choose the grid sizes
h, and h, accordingly as fractions of the corresponding wavelengths: For the grid convergence study we
refine the grid synchronously in both r and z directions. We note that having the same resolution (nodes per
wavelength) in both directions yields the cell aspect ratio of h,. /h, = Ar/A, = ko /v, which in our simulations
is equal to either 20/1 or 20/3.

We have looked at the values of the relative error (the difference between the computed and exact
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solution normalized by the maximum of the exact solution over the domain) in the maximum norm:

max |Ecomputed - Eexactl

Tz
Error = (

max |Eexact |

(r,2)

(7.8)

The results are summarized in Tables 7.1 and 7.2 for » = 1 and v = 3, respectively. In both tables all values,

except those in the last column, correspond to zmax = 30.

TABLE 7.1

Mazimum relative error (7.8) of the calculated solution in the linear case for v =1.

Backscattering

Off (C = 0)

On (C = 1/2)

Grid sizes Boundary condition at z =0
Dirichlet ‘ Two-way ‘ Dirichlet ‘ Two-way | Two-way
Zmax = 30 Zmax = 10
hr = A /10, by, = A, /10 0.256 0.257 0.33 0.24 0.16
hr = A /20, by, = A, /20 0.0165 0.0165 0.33 0.016 0.01
hr = A /40, h, = A, /40 0.001 0.001 0.33 0.001 0.0012
hy = X\:/80, h, = X,/80 | 6.5-107° | 6.5-107° 0.33 6.5-10=° | 0.00075
TABLE 7.2
Same as Table 7.1, with v = 3.
Backscattering
Ooff (C=0) On (C =1/2)
Grid sizes Boundary condition at z =0
Dirichlet ‘ Two-way ‘ Dirichlet ‘ Two-way | Two-way
Zmax = 30 Zmax = 10
hr = A /10, by, = A, /10 0.25 0.25 0.33 0.24 0.089
hr = A /20, by, = A, /20 0.016 0.016 0.33 0.015 0.0064
hr = A /40, h, = A, /40 0.001 0.001 0.33 0.001 0.0012
hy = X\:/80, h, = ,/80 | 6.3-107° | 6.3-107° 0.33 6.3-10=° | 0.00075

From Tables 7.1 and 7.2 we first conclude that, as expected, the Dirichlet boundary condition (7.7)

provides no convergence when the backscattering is present (third column). In all other columns we observe

a fourth-order grid convergence, because every time the grid is refined by a factor of two in each direction,

the value of the error drops by approzimately a factor of sizteen (except for the last column of each table,

which will be discussed later). Thus, the algorithm that we have constructed indeed possesses the design

convergence properties. Besides, we clearly see that the left propagating waves in the solution present no

problem from the standpoint of numerics for the algorithm with the two-way ABC at z = 0.

Let us now return to the data appearing in the rightmost columns of both Table 7.1 and Table 7.2.

These data clearly do not demonstrate the fourth-order grid convergence. The only difference between these

data and all other data in the tables is that the rightmost columns correspond to a smaller computational
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domain in the z direction, zpax = 10, as opposed t0 zmax = 30. The breakdown of the grid convergence that
we observe on the small domain has the following explanation.

The boundary condition that we specify at z = zyax 18 the homogeneous radiation boundary condition
(4.10a), which is approximated by the one-way-to-the-right discrete Helmholtz equation (6.16). Both the
continuous (4.10a) and discrete (6.16) radiation boundary conditions at z = zmax were obtained under the
key assumption that the governing equation near z = zp. reduce to the constant-coefficient Helmholtz
equation AE + kSE = 0. In other words, this means that the mode Eygp of (7.2a) has to reduce to
the “pure” propagating mode e*V*~"*% cos(vr), and the mode Elg of (7.2b) has to effectively vanish at
Z = Zmax. From the specific form of the modes that we analyze, see (7.2), we conclude that the larger we
take the domain [0, zmax] the better the quality of the agreement with the desired properties near z = zmax
is going to be. In other words, for the smaller domain zynsx = 10 we are essentially trying to apply a
homogeneous radiation boundary condition to the equation, which is not “sufficiently homogeneous” itself
and therefore, the error is dominated by this discrepancy, rather than the actual truncation error associated
with the discretization of the differential operator. As a consequence, we do not observe the fourth-order
grid convergence for the smaller domain. This demonstrates the importance of choosing zmax sufficiently
large, so that the homogeneous radiation boundary conditions can be applied successfully.

0.017 0.016

Error(z)
Error(z)

(A) No backscattering, C = 0. (B) With backscattering, C = 1/2.
Fi1g. 7.1. Behavior of the error (7.9) for v =1, two-way ABC ot z =0, hy = X\ /20, h, = X, /20, 8 = 3, and Zmax = 30.

Another interesting phenomenon that we would like to discuss in the framework of the linear case is the
behavior of the error as a function of the coordinate z. A typical example in Figure 7.1(a), which corresponds
to the case of no backscattering, shows a linear growth of the error with z except in the area of a small

“bump” near the boundary z = 0. The actual quantity represented in Figure 7.1(a) is

mf}x |Ecomputed - Eexactl

Error(z) = (7.9)

max |Eexact|
(r2)

A similar error pattern is obtained for the case with backscattering, as shown in Figure 7.1(b). The curve
in Figure 7.1(b) can be described as an oscillatory region next to the boundary z = 0 associated with
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backscattering (the magnitude the error is still small there) followed again by a stretch of linear growth.

It is, in fact, easy to see where this linear growth comes from. Proposition 6.1 implies that the discrete
right propagating mode ¢ approximates the continuous right propagating mode e*<* = ei<#:" (in the
notations of this section, k2 = \/k2 — v?). Indeed, assuming that k. - h, is small, we have obtained that
q = ekt 4 O ((kc . hz)5), see formula (6.4a). Consequently, under the same assumption we have ¢* =
ethehan 1 O (n(k, - hy)®) = e*<* + O (zh?) because z = hyn. As 0 < z < zyax, We see that the error grows
linearly in z and that the maximal error is O(zmax - h). The aforementioned linear growth of the error
explains, in particular, why on coarser grids we obtain smaller maximal error for zmax = 10 (fifth column)
than for zmax = 30 (fourth column), see Tables 7.1 and 7.2.

It is, in fact, instructive to see how the
error curve similar to those displayed in Fig-

-3

X 1 O ure 7.1 would look for a solution computed on

7 the small domain zpmax = 10. In Figure 7.2
we show such a curve for exactly the same
set of parameters used for computations that
led to Figure 7.1(a), except that zmax is equal
to 10 instead of 30. Although the magnitude

of the error is small, we observe oscillations

Error(z)

throughout the entire domain. As we have no
backscattering in this case (C = 0), the os-
cillations may come only from the right (far-

field) boundary z = zmax- In fact, these oscil-

O lations are an early manifestation of the phe-

O 1 O nomenon that we have discussed earlier. On

small domains, the application of the homoge-

Z neous far-field radiation boundary conditions

Fic. 7.2. Same as Figure 7.1(a) with zmax = 10. (4.10a) and (6.16) is not fully “legitimate” be-

cause the governing equation itself is not suf-

ficiently close yet to the constant coefficient version AE + k3E = 0. The inconsistency gives rise to the

oscillations shown in Figure 7.2. For finer grids this inconsistency, as we have seen, prevents the methodol-
ogy from converging on small domains with the theoretically prescribed rate of O(h*).

7.2. Nonlinear problem. Having corroborated the design properties of the numerical algorithm in
the linear regime in Section 7.1, we now address its performance for the nonlinear case. In all cases that we
analyze hereafter we take the value of kg = 8 and as before denote A, = 27/ky. In addition, in all simulations
the solution is driven by the incoming signal

2

E} (r)y=eT" . (7.10)

mc

The key quantity in the NLS model, as far as nonlinear self-focusing and singularity formation are
concerned, is the ratio of the power of EY _ and the critical power N, (see Section 3.1). Therefore, we now

briefly review the calculation of the critical power for the NLS (3.3).

7.2.1. Critical power. Weinstein [30] had proved that the critical power for singularity formation in
the critical NLS, N, is equal to the power of the so-called waveguide solution. In the case of the (14+1)D
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critical NLS (3.3), the waveguide solutions are of the form

P(z,1) = exp(iaz)Q(r;a) -

Substitution of this solution in (3.3) shows that the waveguide profile () satisfies:

er_aQ+Q5:Oa QI(O):

Integration of this equation yields:

Q(r;a) = (3a)'/*sech'/?(2y/ar) .

Therefore, a necessary condition for singularity formation in (3.3) is that

/ |vho (7)]3 dFf > N ,
0

where

_ [T 2 _
Nc_/o Q*(r)dr =

In dimensional variables, this condition is

V3

| Bz

Therefore, the fractional critical power of EY . of (7.10) is

lIIC

— fO | 1nc|2dr —
Ne/kor/€

1.1

|E(0,2)]

20
z
F1a. 7.3. Grid convergence for € = 0.04, zmax = 20, Tmax/Zmax =
1, hy = A /10, for hy = X;/2 (solid line), h, = X, /4 (dotted line),
and hy = X, /8 (dashed line).

2
— . 11
ke (711)

7.2.2. Results. We start with a moder-
ate nonlinearity in equation (3.2), ¢ = 0.04,
which, according to (7.11), corresponds to 74%
of the critical power when k3 = 8. Our goal
is to first demonstrate the grid convergence of
the algorithm. We also compare the two-way
ABC against the standard Dirichlet boundary
condition at z = 0, as we did in the linear
case, both from the standpoint of accuracy of
the solution and the rate of convergence of our
iterative scheme.

For the grid convergence study we first
choose the following parameters: zmax = 20,
Tmax/Zmax = 1, by = A, /10, hy = A, /2. In our
computations we have observed that changing
the discretization parameters in the r direc-
tion may exert a more noticeable influence on

the solution than changing the discretization

in the z direction. Therefore, we initially refine the grid in the r direction only and in Figure 7.3 present
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three solution curves: Absolute value |Egomputed(0, 2)| on the axis of symmetry r = 0 as a function of z
for hy, = A;/2, A,/4, and A\, /8. We see that the last two curves that correspond to h, = A\,/4 and A,/8
are virtually indistinguishable from one another and both differ noticeably from the first one obtained on
a coarser grid h, = A,/2. We therefore conclude that as the grid is refined the numerical solution does
converge, even so in this nonlinear case we do not know what the exact solution is and consequently cannot
explicitly find the error.

We note that we plot the values of the computed solution on the axis of symmetry r = 0 because this is
the most interesting location in the domain where the genuinely nonlinear phenomena take place. A clear
manifestation of this nonlinear phenomena is the “bump”, or peak, on the solution curve in Figure 7.3, whose
value is higher than that of the incoming wave E2 _(0) = 1. Clearly, in the absence of nonlinear effects (i.e.,
€ = 0), an unfocused input beam, such as (7.10), would simply diffract while propagating to the right, i.e.,
toward large 2’s, with its maximum amplitude monotonically decreasing. The amplification of the incoming
signal due to the nonlinear response of the medium is called self-focusing, and is well-known within the NLS

framework.
0.012 T 0.012
B e
uwi-  0.006 ui-  0.006f}
I I
[=] [=]
w w
0 0
0 10 20 0 10 20
r r
(A) by = Az /10, by = A, /4 (B) hz = Az /20, hy = A /8

Fi1g. 7.4. Backscattering for € = 0.04, zmax = 20 and Tmax/Zmax = 1.

Another interesting phenomenon, which is actually the one that our methodology has been specifically
designed to capture, is backscattering. In the previous linear studies in Section 7.1, the extent of backscatter-
ing was predetermined by the value of C'. To estimate the extent of backscattering in the current nonlinear
case, we plot the quantity |Ecomputea(r, 0) — B9 (7)| as a function of r. In Figure 7.4(a) we show the corre-
sponding graph for € = 0.04, zmax = 20, Tmax/Zmax = 1, by = A, /10, and h, = A,/4. From Figure 7.4(a)
we conclude that most backscattering occurs around the axis of symmetry » = 0, and that the magnitude
of backscattering there is about 1.2% of the incoming power. Backscattering obviously accounts for the
deviation of the solution curve at z = 0 in Figure 7.3 from the incoming signal value there, which is equal
to 1.

A comprehensive grid refinement study should, of course, include refinement in the z direction along
with the refinement in the r direction. In addition to the cases reported previously, we have run several
others, refining the grid either separately in each direction or synchronously in both directions, and also
changing the size of the computational domain. Note that determining the correct, i.e., sufficiently large,
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size of the computational domain is important, because choosing it too small in the z direction may cause
reflections from the boundary z = zmax (Section 7.1), and choosing the domain too small in the r direction
is dangerous because the boundary r = rya.y is reflecting and the reflections may, in fact, completely destroy

the solution (we have actually observed the latter phenomenon in our computations).

Basically, the solutions that we have obtained on all grids finer than h, = A,/2, h, = A,/10 (i.e., finer
than the coarsest of the previous grids), and all domains larger or equal than zmax = rmax = 20, are almost
identical. We do not plot these solutions as they are very close to one another, we rather summarize the
results of our computations in Table 7.3, in which the two key quantities for each case are presented: The
maximum value of self-focusing, defined as max, |E(0, z)| (i.e., the peak on the curve similar to those shown
on Figure 7.3), and the maximum backscattering at z = 0, defined as max, |E(r,0) — E2 ()| (i-e., the peak

on the curve similar to those shown on Figure 7.4).

TABLE 7.3
Grid refinement and domain enlargement study for ¢ = 0.04.

Zmax | Tmax/?max h, h, max. self-focusing | max. backscattering
20 1 A /10 | A /4 1.0136 0.013
20 1 A./10 | A./8 1.0129 0.0128
20 2 A /10 | A /4 1.0135 0.0128
40 1 A /10 | A /4 1.0132 0.0127
20 1 AL /20 | A /4 1.0124 0.0112
20 1 A:/20 | A./8 1.0119 0.0111

From Table 7.3 we see that all values of maximum self-focusing that we have computed on different
grids and different domains differ from one another by at most 0.17%. This indicates that for those ranges of
parameters (grid sizes and domain sizes) that we have used the numerical solution is already “well converged.”
The level of backscattering in all our simulations is between 1.1%— 1.3% of the incoming power, which again
constitutes an error of only about 0.2% (relative to the maximum of the solution). One should probably
regard the computational variant presented in the last row of Table 7.3 as the most accurate one because it
was computed on the finest grid. The corresponding backscattering profile (for h, = A,/20, h, = A,/8) is
shown in Figure 7.4(b). We again see that this profile is practically the same as the one from Figure 7.4(a),
which corresponds to the grid twice as coarse in each direction.

We now look at the convergence histories for our numerical solutions. Let us recall that the iteration
scheme that we employ is nested. On the inner loop we solve a variable-coeflicient linear equation, whereas
on the outer loop we iterate with respect to the nonlinearity. Currently, we update the coefficient k% =
k3 (14 €|E|*), i.e., make one nonlinear iteration, every ten linear iterations [i.e., in the notations of Section 4,
M(n) = 10in (4.4)]. In Figure 7.5 we show the convergence histories for the two cases that we have discussed
before — those that correspond to the first and last rows of Table 7.3 (Figure 7.5(a) and Figure 7.5(b),

respectively).
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Fig. 7.5. Convergence of iterations for € = 0.04, zmax = 20, Tmax/Zmax = 1.

The actual quantity shown in Figures 7.5 is the maximum absolute difference between the two consecutive

iterations. The sawtooth character of both curves is accounted for by the nested structure of the iterative

procedure. The fast-scale decay followed by a jump back up is the convergence of linear iterations on the

inner loop with subsequent update of k2. The slow-scale decay all the way up to machine zero corresponds

to the convergence of nonlinear iterations on the outer loop.

1.1

|E(0,2)]

0.5
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F1¢. 7.6. |Ecomputed (0, 2)| for the two-way ABC (solid) and for
the Dirichlet BC (dots).

Figures 7.5 demonstrate the convergence
of iterations. Besides, we notice that on a
finer grid, see Figure 7.5(b), this convergence
is faster (about twice as fast) than on the
coarser one, see Figure 7.5(a). In fact, we have
observed in different simulations that the ge-
ometry in the r direction influences the rate
of convergence most noticeably. The larger
the domain size rmax and/or the finer the grid
size h,, the faster the iterations converge. As
of yet, we do not have a rigorous explanation
of this computational phenomenon. We can
only assume that both refining the grid in the
r direction and putting the boundary r = ryax
further away somehow reduce the adverse in-
fluence of this reflecting boundary on the so-
lution.

As stated at the beginning of this section, a major goal of the nonlinear simulations is to compare the

performance of the new two-way ABC against that of the traditional Dirichlet boundary condition at z = 0

(7.7). In Figure 7.6 we compare the actual computed solutions with the two boundary conditions for the

case that we have analyzed before: € = 0.04, zmax = 20, "max/Zmax = 1, by = A, /10, by, = A, /4. We see a

noticeable discrepancy between the two curves. The dotted line that corresponds to the Dirichlet boundary
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conditions is above the solid one, which corresponds to the two-way ABC. The extent of the aforementioned
discrepancy is roughly equal to the level of backscattering that we have recovered previously, which is clearly
a natural result to observe.

We also compare the rates of convergence

10° of the iterative algorithm for the two types

of boundary conditions that we set at z = 0.
The convergence history for the two-way ABC

LIJE 5 is shown in Figure 7.5(a), the convergence his-
I 10 tory for the Dirichlet boundary conditions is
EE shown in Figure 7.7. We see that the con-
XE' vergence with the two-way ABCs is about
g 107"} 1 1.5 times faster that that with the Dirich-

let boundary conditions, which presents an-

other advantage of using the new methodol-

T . ogy. Let us mention that the phenomenon

_200_ 400 600 of convergence speedup for iterative solvers
iteration number (n)

Fia. 7.7. Same as Figure 7.5(a), with the Dirichlet boundary
condition at z = 0.

caused by the application of highly-accurate
nonlocal ABCs (similar to those developed in
this paper) has been noticed previously by sev-
eral authors, although in completely different settings primarily associated with the fluid flow computations,
see [28].

We now consider the case ¢ = 0.06, for

which the input beam power is 90% of the
critical power. Bagically, the results have
the same qualitative features as for the case
€ = 0.04. In particular, the convergence of it-

erations is faster for finer grids and larger com-

putational domains, as well as for the two-way
ABC compared with the traditional Dirichlet
boundary condition at z = 0. Moreover, we

note that for ¢ = 0.06 some cases with the
Dirichlet boundary condition did not converge
at all.

In Figure 7.8A, we plot the on-axis am-

o, m 2%  Pplitude raised to the power 4 for the domain
F16. 7.8. |Feomputea 0, 2)|* forze — 006, he = Ae /20, hy = Au /8, of the same size as corresponds to Figure 7.3
Fmax/?max = 1. A — Zmax =20, B — zmax = 40. (but with a finer grid). We plot this particu-

lar quantity because on one hand, it is the one
that controls the relative magnitude of nonlinearity, which is crucial for our study, and on the other hand it
allows to see most clearly that the solution for zy,., = 20 has small oscillations throughout the domain, which
are reminiscent of those seen in Figure 7.2. In order to verify that these oscillations are indeed due to the
right boundary z = zmax being placed too close, we re-ran the same simulation but with the right boundary

located at twice the previous distance, i.e., Zmax = 40. The corresponding profile of |Ecomputea(0, 2)|* is
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shown in Figure 7.8B, but only for the half of the new range: 0 < z < 20, to make the scale the same as
that on Figure 7.8A. From Figure 7.8B we see that in the case zmax = 40 the little wiggles have almost
disappeared, suggesting that this is indeed a numerical artifact, rather than a true physical phenomenon.
Apart from the little wiggles, the two solutions seem to be identical as Figure 7.9 indicates.

The explanation for the appearance of the

11 . small wiggles throughout the domain when the
right boundary is too close is the same as in
1 ] the linear case, namely, that in order for the
ABC at zmax to perform well, | E|* should be
sufficiently small there so that k* ~ k% with
sufficient accuracy. Therefore, at higher ¢, one

needs more decay in |E|* for this approxima-

|E(0,2)]

tion to hold. On top of that, at higher pow-
ers self-focusing is stronger, implying that |E|*
would decay slower in z. This, in turn, means

that we may need to take larger and larger do-

0.4 . mains at higher powers, otherwise, the quality
0 20 40 of the computed solution will deteriorate. Be-

z sides, the convergence rate of our iterations
F1¢. 7.9. |Ecomputed(0, 2)| for € = 0.06, h, = X, /20, hr = A, /8,
Tmax/Zmax = 1. Solid line — zmax = 20, dotted line — zmax = 40.

may also be affected by the location of the
boundary z = 2zmax. For higher powers on
those domains that we have considered it becomes prohibitively slow (if there is convergence at all). This is
the reason why, at present, we could not go above € = 0.06. We should note, however, that besides enlarging
the domain, changing the iterative algorithm itself to a more efficient one may alleviate the aforementioned
problem. This issue will be studied in the future.

The results of the grid convergence study for ¢ = 0.06 are summarized in Table 7.4. Comparison of
Table 7.3 with Table 7.4 shows that as the input power increases (relative to the critical power), more energy

gets back-scattered and the self-focusing peak becomes higher, which is expected from physical considerations.

TABLE 7.4
Same as Table 7.3 with ¢ = 0.06.

Zmax | Tmax/%max h, hy max. self-focusing | max. backscattering
20 1 A /10 | A, /4 1.0567 0.0188

20 1 A /20 | A./8 1.0528 0.0188

20 1 A:/20 | A,/16 1.0526 0.0188

20 2 A /20 | A./8 1.0527 0.0188

20 1 A /40 | A,/8 1.0518 0.0179

40 1 A /20 | A./8 1.0512 0.0173

8. Discussion. In this section we briefly describe the approaches that have been used previously in the
literature for solving similar problems, discuss the motivation behind making some particular choices when

constructing our algorithm, present the conclusions, and outline directions for future research.
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8.1. Previous approaches for solving the NLH. Feit and Fleck solved the NLH by splitting the
wave into its forward- and backward-components, and solving only for the forward propagating part. Under
this approach it was assumed that the “transverse variation in [k] is sufficiently small.” As for backscattering,
their algorithm “removes power that cannot propagate in the forward direction without accounting explicitly
to where it goes” [8]. Akhmediev and collaborators [1,2] solved an initial-value problem which can be viewed
as a “modified” NLH. However, they neglected the 1., term, as well as backscattering.

In contrast to the aforementioned approaches, in this paper we solve the Helmholtz equation as a true
“unabridged” boundary value problem. By doing that, we can account correctly for the backscattering,
without introducing any ad-hoc assumptions, the validity of which is unclear.

8.2. Discontinuity at the interface z = 0. In the current study we consider the simplest possible
model for the interface z = 0, where we assume that this interface is non-reflecting, i.e., the wavenumber % is
continuous across z = 0 (Section 2.1). From the standpoint of physics this is, of course, not necessarily true.
For example, an incoming laser beam traveling through air which impinges on a water interface would be
partially reflected, due to the difference in the (linear) index of refraction between air and water. The easiest
way to incorporate the discontinuity in &k at z = 0 into the model would be to do that already for the linear
constant-coefficient equation (4.4) in the framework of the iteration scheme, as we do all other boundary
conditions. After the transverse Fourier transform, we obtain a collection of one-dimensional Helmholtz
equations. For each of the latter, the application of the standard elliptic interface conditions, which for the
second-order equations are the continuity of the solution and its flux across the interface, yields the standard
expressions for the reflection and transmission coefficients, once the incoming wave is given. If we want to
use the transmitted wave (i.e., already past the interface) as the primary data for the problem, the same
expressions will yield the amount of reflections and the original incoming signal. Moreover, they will also
apply to treating the possible reflection of the backscattered waves by the interface z = 0.

8.3. Nonlinear iterations. The primary motivation behind our choice of the nonlinear iteration
scheme (see Section 4) was its simplicity. We note that equations (4.1), (4.2) have been obtained by simply
freezing the nonlinear term rather than differentiating it in the sense of Frechet. For complex-valued solu-
tions E (which is the case in our study) the nonlinearity in equation (3.2) is obviously non-differentiable
and consequently, the direct implementation of the Newton’s method is not possible. As, however, been
mentioned by Bayliss [3], Newton-type iterations may still apply to equation (3.2) if it is solved separately
for the real and imaginary components of E. We did not try to implement this idea in the current study.
We acknowledge, however, that among the different parts of our algorithm the nonlinear iteration scheme
is apparently the primary candidate for improvements in order to achieve convergence with higher input

power, i.e., for larger e.

8.4. Linear solver. The solver that we employ for the variable-coefficient linear Helmholtz equation is
also iterative and fits as the inner loop of the overall nonlinear solver. This choice is, of course, by no means
unique. In general, one can solve the linear Helmholtz equation with variable coefficients using a variety of
other methods, such as the Ricatti method [16]. A recent review of different approaches for solving the linear
Helmholtz equation by Turkel can be found in [29]. We note, however, that combining a Helmholtz solver
with global ABCs, and in particular, a two-way ABC of the type constructed in this paper, presents a rather
difficult task, since the speed of propagation of plane waves in the z direction depends on their transverse
wavenumber. Indeed, most of the solvers available in the literature deal with simpler boundary conditions,
such as those of the Dirichlet type. The solver that we have constructed involves a direct inversion of the
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constant-coefficient operator on every iteration using the separation of variables. This approach, as has been
mentioned, is most natural for incorporating global ABCs into the model.

8.5. Fourth-order scheme. In this study we chose a fourth-order method, rather than a conventional
second-order one, for our simulations. The motivation behind this choice is, in fact, standard, and relies
primarily on the possibility of having less points per wavelength and accordingly reducing the required
overall grid dimension for a given level of accuracy. Besides, our numerical simulations corroborate that the
extent of backscattering in the model that we study is indeed small. In the cases like that, i.e., when the
interesting phenomenon is small in magnitude compared to the background, it is generally acknowledged
that higher-order methods perform better than lower-order ones.

We note in this connection that the construction of one-way discrete Helmholtz equations and radiation
ABCs for a second-order scheme would be conceptually the same as the one described in Section 6 but
substantially less cumbersome in both derivation and implementation, as it would not require taking care
of an extra pair of evanescent waves. However, having a higher order method justifies, in our opinion, the
additional work invested in obtaining the more sophisticated ABCs.

8.6. Conclusions. Summarizing, we say that in the current paper we have developed and implemented
a fourth-order finite-difference method for solving the nonlinear scalar Helmholtz equation that accounts for
the phenomena of self-focusing and backscattering. The method is supplemented by the highly-accurate
global ABCs that make the external artificial boundaries fully transparent for all outgoing waves (including
the backscattered waves) and at the same time are capable of correctly prescribing the incoming signal at
the outer boundary of the computational domain. To the best of our knowledge this is the first attempt ever
of constructing global ABCs that possess the foregoing two-way capability.

The fourth-order grid convergence of the method has been directly verified by solving model linear
problems. In the presence of backscattering, the new method clearly outperforms a traditional technique
based on the Dirichlet boundary condition. We have also conducted a comprehensive experimental study of
the nonlinear case in the regime where the input power is below the critical one for blowup. Similarly to the
linear case, this study corroborates the convergence of the method and its superiority over the traditional
approach.

The new method allows for a systematic quantitative study of backscattering in nonlinear self-focusing.
To the best of our knowledge, this is the first study that allows, for example, to calculate the actual extent
of backscattering, its dependence on the input power, etc. As has been mentioned, the new extended
capabilities are accounted for by the fact that, unlike previous studies, we solve the NLH as a true nonlinear
boundary value problem, without introducing any simplifying assumptions on the continuous level prior to
the discretization. Therefore, the only error that we are actually left with is the truncation error associated
with the discrete approximation of derivatives.

8.7. Future work. In this paper we have developed a new numerical methodology for solving the true
boundary value problem for the NLH. We believe that our approach can be extended to address various
other issues that are not covered by the present study. For example, it is interesting to conduct a systematic
comparison of NLH simulations with the corresponding NLS simulations. Such a comparison would enhance
our understanding on the role of nonparaxiality and backscattering. It is also interesting to compare our
NLH simulations with the earlier approaches for solving the NLH, which did not treat the NLH as a true
boundary-value problem. In addition, future studies should attempt to go above the critical power for
blowup. If successful, this would provide a strong support for the current belief that there is no blowup in
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the presence of nonparaxiality.

In this study we have primarily focused on the NLH which corresponds to the critical NLS. However, our
numerical approach can be applied for both subcritical NLS (e.g., calculating the amount of backscattering
for solitons), as well as the supercritical case.

We finally note that the nonlocal homogeneous radiation ABC at z = zyax, as well as the nonlocal non-
homogeneous two-way ABC at z = 0, can be cast into the general framework of pseudo-differential boundary
equations and projection operators of Calderon’s type (the Calderon equation in the case of the two-way
ABC will be non-homogeneous as well) and the difference potentials method by Ryaben’kii, see [5,18,21-24].
This, in particular, may allow considering curvilinear outer boundaries if necessary, as opposed to only
linear boundaries considered in the current study. Besides, such a reformulation will be generally useful from
the standpoint of understanding the fundamental connections between global ABCs of different types that

appear in the scientific computing literature.
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